Packet Craft for
* Defense-in-Depth

Mike Poor
mike@digitalguardian.net

& Topics Covered

= Introduction to Packet Craft

= Packet Craft for testing IDS/Firewall
rules

= Replaying Packet captures
= Editing Packets / Traffic
= Packet Craft for good and evil

* Tools covered

= Packet Crafting:
= Hping2
= nemesis
= SING

= Packet Editing:
« Netdude
= Mmergecap

= Packet play:
= tcpreplay
= netcat

= Packet Decoding:
= Ethereal
= Tethereal

As we can see, all the tools covered in this presentation are designed
for the Unix operating system. Some of these tools, like netcat,
ethereal, and ngrep are available for the Windows platform, but their
use under windows and other Windows based tools is beyond the
scope of this presentation.

* Netcat

www.atstake.com/research/tools/network_ utilities
= "Network Swiss Army Knife”
Simple network listener
Network cat
Network file transfer
Network connection relay tool

Netcat is the ultimate handy networking tool to have on your labtop.
Useful for all sorts of things, we will demonstrate some of the basics.
When you are ready for ultimate netcat functionality, you can try your
hand at the netcat webserver ©

Netcat installs easily on all Unices that Ive tried it on. There is also a
netcat.exe for the Windows platform.

See packages available at: www.atstake.com/research/tools/network_utilities and
through the distribution of your OS.

i Netcat Listener

= To set up netcat as a TCP listener:
$ nc—l-p 80
= This command will set up port 80 TCP as a
listener

» Data sent will be displayed through
standard-out.

= Very useful for setting up a fake service for
testing exploit code out in a lab

i Net - cat

= Network implementation of the cat tool

$ nc 10.10.10.10 80 < foo

= This command will send the file named foo
as data on a tcp connection to port 80 on
10.10.10.10
= Very useful to send exploit code across
the network to test IDS signatures

Netcat client:
$ echo "this is a test" > foo
$ netcat 127.0.0.1 2000 < foo

Netcat listener:
$ netcat -1 -p 2000
this is a test

This example shows how we can transfer a simple text file across the
network to standard-out. If we wanted to save the file off to a file, all we
would have to do is execute the following command on the listener:

$netcat - —p 2000 > foo

Netcat would take everything received on port 2000 and place it in a file
named “foo”.

This becomes very useful to the IDS analyst, in order to test ids rules.

* Netcat file transfer

= Easy file transfer using netcat
= hetcat listener:
$ netcat —I —p 80 > foo
= hetcat client:
$ netcat 10.10.10.10 —p 80 < foo
= Useful for quickly transferring files
without authentication

Netcat can be used to set up a simple one time file tranfer between two
hosts. There is no authentication, so no need to track usernames and
passwords. Bear in mind that any host that connects to the TCP port
you set up to cat the file through, will receive the file after the three way
handshake is complete.

& Netcat as connection relay

= Transparent raw proxies through netcat

relays:
$ netcat -1 foo —p 8080
$ netcat -1 goo —p 7070 | netcat foo —p 8080
$ netcat -1 hoo —p 6060 | netcat goo —p 7070
$ netcat hoo —p 6060 < FILE

FILE |— ‘%é\;gé{l ;ﬂégé‘gég — % — FILE

hoo goo foo
6060 7070 8080

Here we have four machines: ioo, hoo, goo, and foo.

Our objective here is to proxy a file from ioo to foo, through hoo and
goo (ouch, that was painful).

We must set these relays up in backwards order, from receiver to
sender.

We start with setting up the receiving host, foo:
netcat —I foo —p 8080

Then we set up our first relay on goo:
netcat —| —p 7070 | netcat foo —p 8080

All TCP traffic going to port 7070 on goo will now be relayed to port
8080 on foo.

Continuing with our relay on hoo:
netcat —| —p 6060 | netcat goo —p 7070

Now everything going to port 6060 will be forwarded through goo on
port 7070, to foo on port 8080.

The finale shows us cat'ing a file through our transparent relays to foo.
netcat hoo —p 6060 < FILE

i Netcat test of Snort rule

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 \
(msg:"EXPLOIT"; flow:to_server,established; \

content:"|eb2f 5feb 4a5e 89fb 893e 89f2|";)
= Snort rule for detecting a samba buffer

overflow.
$ netcat -1 —p 139
$ snort —c snort.conf —| /tmp —A console —q —i lo
$ netcat 127.0.0.1 139 < file

= Snort returns:

05/25-19:04:52.899897 [**] [1:292:4] EXPLOIT [**] {TCP}
127.0.0.1:4561 -> 127.0.0.1:139

Packet Craft for Defense in Depth © 2003 Mike Poor

We write a new rule for a linux samba overflow. If we wanted to test
this rule out to see if snort will fire, we can do two things. First, we
could fire the original exploit across the wire. This works well if we are
in an isolated lab, and have a copy of the latest exploit. Many times this
does not work that way. Security experts analyze the vulnerability and
come up with proof of concept code that they do not often share. The
may however share the offsets and raw bytes of a portion of the exploit
in action. We can take those raw bytes and write a signature, then test
it with a hex editor, netcat and snort.

First, we use a hex editor to create a file with raw bytes matching
exploit signature. Once this is in place, we set up a netcat listener on
port 138 TCP.

$ netcat —| —p 139
Then we fire up snort:
$ snort —c snort.conf —I /tmp —A console —q
We send the raw byte file to the open port:
$ netcat 127.0.0.1 139
Sure enough snort matches the following rule, and triggers an alert:

alert tcp SEXTERNAL_NET any -> $HOME_NET 139 (msg:"EXPLOIT
x86 linux samba overflow"; flow:to_server,established; content:"|eb2f
5feb 4a5e 89fb 893e 89f2|"; reference:bugtraq,1816;

* Hping?2

“hping is a command-line oriented TCP/IP packet assembler
= Uses for hping:

= TCP, UDP, ICMP Header manipulation

» Testing firewall and IDS rules

= Recreating traffic traces

= Network and TCP/IP implementation testing

= Hping2 is available as Unix source code from
hping.com

Hping is one of my favorite packet crafting tools. It is powerful, simple,
and compiles cleanly. You also have to work hard to use it for evil,
which in the end is a good thing. | use hping2 often when | need to test
out IDS rules, or manually test a hosts responses to anomalous traffic.

/4

From the simple task of sending a packet with a spoofed source
address, to writing a complete scripted test, hping2 rises to the
occasion. On a downside, hping2 does not give us much options in the
payload department.

Installing hping2 is as easy as: $./configure &&
make && make install

10

Hping2 IP Spoofing

= hping can be used for simple IP spoofing:

$ hping2 -A 172.16.1.77 -S —c 1 10.10.10.18

= This will send 1 syn packet to 10.10.10.10
with a spoofed source address of
172.16.1.77

15:51:07.257591 172.16.1.77.2119 > 127.0.0.1.6060: S
[tcp sum ok] 1802645429:1802645429(0) win 512 (ttl 64,
id 46011, len 40)

In the bolded segment we see that hping is indeed spoofing the source address to be:
172.16.1.77:

15:48:44.273428 172.16.1.77.1041 > 127.0.0.1.6060: S [tcp sum okK]
1645313341:1645313341(0) win 512 (ttl 64, id 43574, len 40)

0x0000 4500 0028 aa36 0000 4006 a43b ac10 014d E.(6.@..;...
0x0010 7f00 0001 0411 17ac 6211 7d3d 26a1 1e9a b.}=&...
0x0020 5002 0200 413d 0000 P..A=..

ac10014d in hex translates to 172.16.1.77

M

11

Hping2 Anomalous TCP Flags

= Use hping2 to send anomalous TCP flag
combinations:
$ hping2 —-SFPUA —c 1 127.0.0.1 —p 6060

= This sends 1 TCP packet to port 6060 with
the SYN, FIN, PUSH, URG, and ACK flags set.

15:56:50.122279 127.0.0.1.2223 > 127.0.0.1.6060: SFP [tcp sum
ok] 57874069:57874069(0) ack 852405111 win 512 urg O (itl 64,
id 36454, len 40)

15:56:50.122317 127.0.0.1.6060 > 127.0.0.1.2223: R [tcp sum oK]
852405111:852405111(0) win 0 (DF) (ttl 64, id 1196, len 40)

Issuing the command:
$ hping2 -SFPUA —c 1 127.0.0.1 —p 6060

We can see that hping2 is sending a packet with the syn, fin, push, urg, and ack flags set. My
Linux machines promptly replies with a RESET flag. Note that while my machine reset the
connection, which you would expect, we have now elicited a response.

15:56:50.122279 127.0.0.1.2223 > 127.0.0.1.6060: SFP [tcp sum ok] 57874069:57874069(0)
ack 852405111 win 512 urg O (ttl 64, id 36454, len 40)

15:56:50.122317 127.0.0.1.6060 > 127.0.0.1.2223: R [tcp sum ok] 852405111:852405111(0)
win 0 (DF) (ttl 64, id 1196, len 40)

12

* Hping2 Network Performance

= Use hping2 to test how long a Linux 2.4
kernel will keep TCP connections in a
half-open state:

$ netcat —I —p 6060
$ hping2 —c 1000 =S 127.0.0.1 —p 6060

= Once we hit 192 open connections,
Linux starts dropping the oldest ones.

Here we can test the Linux kernels ability to withstand a barrage of half
open connections to the same port.

First | set up a netcat listener on port 6060. | then use hping2 to send
1000 SYN packets to port 6060.

Once this is underway, | routinely check how many connections we
have open to port 6060:

netstat -an | grep 6060 | wc -I
190

netstat -an | grep 6060 | wc -I
191

netstat -an | grep 6060 | wc -I
192

netstat -an | grep 6060 | wc -I
192

netstat -an | grep 6060 | wc -I
192

$ time hping2 —c 1000 —-S 127.0.0.1 —p 6060 real 3m15.203s

Sure enough, after about 3 minutes, and 15 seconds, at about the time
Linux reaches 191/192 half open connections, the kernel starts to drop
the oldest connections.

13

* Nemesis

“Nemesis is a command-line UNIX
network packet injection suite”

www.packetfactory.net/projects/nemesis/

= Nemesis is a suite of packet crafting
tools for the following protocols: arp,
dns, ethernet, icmp, igmp, ip, ospf, rip,
tcp, and udp

Nemesis is a very powerful suite of packet crafting tools. Nemesis is
able to craft packets for the following protocols: arp, dns, Ethernet, icmp,
igmp, ip, ospf, rip, tcp, udp.

Nemesis can be used for a wide range of packet crafting goals, from
IDS and firewall testing, to recreating traffic, to scanning for live hosts
using a variety of different tools. Like hping2, the facility of nemesis
being a Unix command line tool, allows the user great freedom in shell
scripting whatever test they wish to run.

Nemesis is far more complex then hping2. To run nemesis, you must
first install libnet. You can pick up libnet here:
http://www.packetfactory.net/projects/libnet/

14

* Nemesis — DNS

= Use nemesis in dns mode to test a

firewalls udp connection tracking
$ netcat -1 —u —p 53
nemesis dns -i 666 -A 7 -r 3 -S 6.6.6.6 -D 10.10.10.16

= Here we set up a netcat listener on UDP
port 53

= Nemesis sends a dns response with 7
Authority records, 3 Additional records

netcat —| —u —p 53 sets up a udp listener on port 53.

We fire up nemesis in dns mode to send a dns packet to 127.0.0.1, with
a DNS id of 666, 7 Authority records, 3 Additional records, with a
source address of 6.6.6.6

nemesisdns -i666 -A 7 -r3-S 6.6.6.6 -D 10.10.10.16

Sure enough, as seen below, the firewall (the brand remain
unmentioned) lets an unsolicited UDP DNS reply through:

tcpdump: listening on lo

14:40:47.315192 6.6.6.6.38484 > 10.10.10.15.53: [udp sum ok] 666
[0q] [7n] [3au] ns: [|[domain] [tos 0x10] (ttl 255, id 48267, len 40)

Interesting to note that when the author was conducting these tests, he
was using two separate versions of tcpdump. 3.6 Segfaulted each time
| would read the packet with tcpdump —nnvvr foo5.dmp, while 3.7.1 had
no problems.

Tethereal interprets the DNS packet as an improper one, as seen
below: 15

* Nemesis — icmp mode

= Use nemesis to send out of spec ICMP
packets and test responses

$ nemesis icmp -i 8 -¢c 3 -S 6.6.6.6 -D 127.0.0.1 —qE —P -
PING OF DEATH
18:48:41.908512 6.6.6.6 > 127.0.0.1 : icmp: echo request
(ttl 255, id 8630, len 41)

18:48:41.908542 127.0.0.1 > 127.0.0.1: icmp: echo reply
(ttl 64, id 13557, len 41)

* See notes for packet decodes showing types, codes, and
payload

Here we use nemesis in icmp mode to send bogus icmp packets, with a
icmp type of 8, icmp code of 3 (non existant). Here we also notice
something about the ICMP protocol:

from RFC 792, page 15:

The data received in the echo request message must be returned in the
echo reply message.

In essence, what happens when a host receives an Echo request is
that it swaps source and destination IP fields, sets the ICMP type to O,
recalculates the checksum and replays the message on the wire.

nemesis icmp —qE -i8 -¢c 3 -S 6.6.6.6 -D 127.0.0.1

05/25-18:48:41.908512 6.6.6.6 -> 127.0.0.1

ICMP TTL:255 TOS:0x0 1D:8630 IpLen:20 DgmLen:41

Type:8 Code:3 ID:9100 Seq:16540 ECHO

50 49 4E 47 20 4F 46 20 44 45 41 54 48 PING OF DEATH

=4=4=4=4=4=4=4+=4=4+=4+=4+=4+=4=4=4+=4=4+=4+=4+=4+=4+=4+=4=4=4+=4=+

16

* Nemesis — ip mode

= Use nemesis to illustrate how many
different IP fields can be manipulated:

$ nemesis ip -D 127.0.0.1 -S 6.6.6.6 -p 16 -1 31337 -t 24 -T 111

= tcpdump shows us the manipulations:

6.6.6.6 > 127.0.0.1: ip-proto-16 0 [tos Ox18] (ttl 111, id
31337, len 20)

Here we use nemesis in IP mode to generate an IP packet with multiple
manipulations, just to show you how easy it is for attackers to set
arbitrary values in the IP header.

Nemesis is set to send an IP datagram to 127.0.0.1 with a source
address of 6.6.6.6, a protocol number of 16 (CHAQOS), an IP id of 31337
(for the kiddiez), a type of service of 24 (Minimize delay), and a TTL of
111

nemesis ip -D 127.0.0.1 -S 6.6.6.6 -p 16 -1 31337 -t 24 -T 111

We set up our sniffer process:
tcpdump —i lo —nnvvs 1514 —w nemesis1.dmp

The tcpdump output below is the full packet dump of the nemesis IP
packet. Note that in this test, there is no payload. Another thing we
note is that tcpdump does not know the name for protocol 16, CHAOS.

19:30:16.945350 6.6.6.6 > 127.0.0.1: ip-proto-16 0 [tos 0x18] (ttl 111,
id 31337, len 20)

0x0000 4518 0014 7a69 0000 6f10 464c 0606 0606 E...zi.o.FL....
0x0010 7f00 0001

17

* SING

“Send ICMP Nasty Garbage packets to network hosts”
= Very granular ICMP packet creation tool

= Uses:
= Test ICMP stacks
= Test firewall and IDS rules
= Manual OS fingerprinting
= Craft just about any ICMP packet

SING was written by: Alfredo Andres Omella, Slay
<aandres@s21sec.com>

SING was essentially built to order after the research that Ofir Arkin did
in: ICMP uses in scanning

(found at: http://www.sys-security.com/html/papers.html).

SING allows you to manipulate the ICMP protocol at will. It is the most
granular tool for crafting ICMP packets.

18

* SING OS Fingerprinting

= SING can be used for OS fingerprinting
$ sing —0 localhost —c 2

sing -0 localhost -c 2

SINGing to localhost (127.0.0.1): 16 data bytes

16 bytes from 127.0.0.1: seq=0 ttI=64 TOS=66 time=0.168 ms
16 bytes from 127.0.0.1: seq=1 ttI=64 TOS=66 time=0.142 ms
--- localhost sing statistics ---

2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.142/0.155/0.168 ms

<*> Remote OS on localhost is a Linux 2.0.x or Compaq Tru64

Here we use sing to send two packets to local host to try and determine
what operating system the host is running.

sing -O localhost -c 2

SINGing to localhost (127.0.0.1): 16 data bytes

16 bytes from 127.0.0.1: seqg=0 ttI=64 TOS=66 time=0.168 ms
16 bytes from 127.0.0.1: seq=1 ttI=64 TOS=66 time=0.142 ms
--- localhost sing statistics ---

2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.142/0.155/0.168 ms

<*> Remote OS on localhost is a Linux 2.0.x or Compaq Tru64

From Tethereal output, we see that SING is setting the icmp code to 22
on the pings:

Internet Control Message Protocol
Type: 0 (Echo (ping) reply)
Code: 22
Checksum: Ox8cfd (correct)
Identifier: 0x080a
Sequence number: 01:00
Data (8 bytes)

19

* SING ICMP Redirect MSG

= Use sing to send ICMP redirect
messages

= Effectively black holes traffic between
destination and target

$ sing -red -S 10.10.10.1 -gw 10.10.10.3 -dest
66.167.37.101 -x host -prot icmp 10.10.10.10

* See notes for the dangerous effects this traffic can have

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt
Iface

10.10.10.0 0.0.0.0 255.255.255.0 U 400 0 eth0
0.0.0.0 10.10.10.1 0.0.0.0 UG 400 0 ethO

ping www.digitalguardian.net

PING www.digitalguardian.net (66.167.37.101) from 10.10.10.18 :
56(84) bytes of data.

64 bytes from 66.167.37.101 : icmp_seq=1 ttI=50 time=253 ms
64 bytes from 66.167.37.101 : icmp_seq=2 ttI=50 time=252 ms
64 bytes from 66.167.37.101 : icmp_seq=3 ttI=50 time=254 ms

sing -red -S 10.10.10.1 -gw 10.10.10.3 -dest 66.167.37.101 -x host -
prot icmp -ip_id 1 -ip_seq 1 10.10.10.10

ping www.digitalguardian.net

PING digitalguardian.net (66.167.37.101) from 10.10.10.10 : 56(84)
bytes of data.

From ogum.digitalguardian.net (10.10.10.18): icmp_seq=1 Destination

20

* SING ICMP Source Quench

$ sing -sq 10.10.10.10 -S 10.10.10.1 -orig 10.10.10.20
-psrc 2020 -pdst 1010

= Sing sends an icmp source quench
= From source 10.10.10.1
= Destination 10.10.10.10
= Source port 2020
= Dest port 1010

Hackers can spoof your gateway address and generate thousands of
ICMP Source Quenches, attempting to slow down or shut down your
active connections. You can use sing to recreate this traffic, or test
your defenses against it.

sing -sq 10.10.10.10 -S 10.10.10.1 -orig 10.10.10.20 -psrc 2020 -pdst
1010

04:24:43.433429 10.10.10.1 > 10.10.10.10: icmp: source quench for
10.10.10.10.2020 > 10.10.10.20.1010: [|tcp] (ttl 255, id 18991, len 56)
(ttl 255, id 13170, len 56)

21

* Netdude “The Hackers Choice”

NETwork DUmp data Displayer and Editor for tcpdump tracefiles
= Netdude allows you to display and edit
pcap binary files
= Uses:
= Edit capture files to use in lab tests

= Quickly change IP or MAC addresses or
most other fields and fix checksum

= Easily change payload of captured packet.

The main website for the project is located at:
http://netdude.sourceforge.net

There are a few prerequisites for installing netdude. Currently, |
needed GTK (Gimp Tool Kit), and tcpdump. If when installing netdude,
you get an error regarding the configure script not finding GTK-config
you will need to install the gtk-devel package.

22

Etnernet | IPva |

Sre. port (41013

Dst port (80

Seq.number (1154925792)

Data offset (10 | Unused (0) [ulaTr r[s[F

Win (31072)

Checksum (0x0000)

Urgent (0

Opt (MAXSEG) [

GBEd

Opt. (5ACK Perm) |

Opt (EOL)

| s packets. [appiy to an || [

Screen shot of Netdude, with a tcpdump capture file loaded. Here we
see the TCP fields that we can manipulate. Once the changes have
been made, Netdude can recompute the checksums for the datagram
(in this case, both IP and TCP checksums) if desired. This is a huge
advantage over using a simple hex editor or similar.

The following protocols are currently supported for editing under
Netdude:

Name Version
ICMP 0.1.0
Ethernet 0.1.0
IPv4 0.1.0
SLL 0.1.0
TCP 0.1.0
UDP 0.1.0
LLC/SNAP 0.1.0
ARP 0.1.0
FDDI 0.1.0

23

* Netdude

= Use netdude to change packet payload to
embed the phrase: “dead beef” in hex

20:00:52.473658 127.0.0.1.2141 > 127.0.0.1.138: P [tcp sum ok] 1:31(30) ack 1 win 32767
<nop,nop,timestamp 2832599 2832599> (DF) (ttl 64, id 30107, len 82)

0x0000 4500 0052 759b 4000 4006 c708 7f00 0001 E.Ru@.@.......
0x0010 7f00 0001 085d 008a 69d5 fe7d 6a76 397e ... 1P v~
0x0020 8018 7fff 572f 0000 0101 080a 002b 38d7 W +8.
0x0030 002b 38d7 6562 3266 2035 6665 6220 3461 .+8.eb2f.5feb.4a
0x0040 3565 2038 3966 6220 3933 6520 3839 dead 5e.89fb.93e.89..
0x0050 beef

20:00:52.473658 127.0.0.1.2141 > 127.0.0.1.138: P [tcp sum ok]
1:31(30) ack 1 win 32767 <nop,nop,timestamp 2832599 2832599> (DF)
(ttl 64, id 30107, len 82)

0x0000 4500 0052 759b 4000 4006 c708 7f00 0001

0x0010 7f00 0001 085d 008a 69d5 fe7d 6a76 397e ...]..i..}jvo~
0x0020 8018 7fff 8436 0000 0101 080a 002b 38d7 ... 6....... +8.

0x0030 002b 38d7 6562 3266 2035 6665 6220 3461
.+8.eb2f.5feb.4a

0x0040 3565 2038 3966 6220 3933 6520 3839 6632
5e.89fb.93e.89f2

0x0050 0Oa64

was simply changed to:

20:00:52.473658 127.0.0.1.2141 > 127.0.0.1.138: P [tcp sum okK]
1:31(30) ack 1 win 32767 <nop,nop,timestamp 2832599 2832599> (DF)
(ttl 64, id 30107, len 82)

0x0000 4500 0052 759b 4000 4006 c708 7f00 0001

0x0010 7f00 0001 085d 008a 69d5 fe7d 6a76 397e ...]..i..}jvo~
0x0020 8018 7fff 572f 0000 0101 080a 002b 38d7 W +8. 24

* Netdude

File Edit Protocols Plugins Help

testdata3.dmp ﬂ‘

Tcpdump log
10 1010 10 21

; e
L\\—‘/l

Ethernet 1Pv4 |TCF‘ | 2 |

vers. @) |Headerlen | o | Tos (Nane) Length (82)
D (30107) R[D M| Frag. Offset (0)
TTL (54) | Protacol (TCF) Checksum (1xe845)
[Sro. addr. (10.10.10.10)
Dst. addr. (192.166.10.10)

| 5 packets. [Apply ta all ‘ |

20:00:52.473658 0:0:0:0:0:0 0:0:0:0:0:0 0800 96: 127.0.0.1.2141 >
127.0.0.1.138: P [tcp sum ok] 1:31(30) ack 1 win 32767
<nop,nop,timestamp 2832599 2832599> (DF) (itl 64, id 30107, len 82)

0x0000 4500 0052 759b 4000 4006 c708 7f00 0001

0x0010 7f00 0001 085d 008a 69d5 fe7d 6a76 397e ...]..i..}jvo~
0x0020 8018 7fff 572f 0000 0101 080a 002b 38d7 W +8.

0x0030 002b 38d7 6562 3266 2035 6665 6220 3461
.+8.eb2f.5feb.4a

0x0040 3565 2038 3966 6220 3933 6520 3839 dead
5e.89fb.93e.89..

0x0050 beef

Easily changed |IP addresses and MAC addresses to:

20:00:52.473658 0:be:af:0:de:ad 0:de:ad:0:be:ef 0800 96:
10.10.10.10.2141 > 192.168.10.10.138: P [tcp sum ok] 0:30(30) ack 1
win 32767 <nop,nop,timestamp 2832599 2832599> (DF) (ttl 64, id
30107, len 82)

0x0000 4500 0052 759b 4000 4006 €644 0ala Oala
E.Ru.@.@..D....
0x0010 cOa8 0ala 085d 008a 69d5 fe7d 6a76 397ei..Jjvo~

25

i Tcpreplay

“tcpreplay is a tool to replay captured network traffic”

= tcpreplay is one of them most useful
tools in your arsenal

= Replays tcpdump capture file across a
network interface

= Rate limiting
= Limited traffic shaping

Tcpreplay can be downloaded for free from
http://sourceforge.net/projects/tcpreplay

tcpreplay v 1.4.2 requires Libnet 1.1 or higher. Libnet can be found at:

http://www.packetfactory.net/projects/libnet/

26

* Tcpreplay Uses

= Uses for tcpreplay

= replaying captured traffic for further
analysis

= replaying captured exploit traffic to test
IDS / firewall rules

= Speeding up playback of traffic to test
stability and performance of sniffer or IDS

Tcpdump can be used for numerous network tasks. What | end up
using it most for is to run pcaps of exploits to test an IDS. | can
manage rate limits and speed to further test the IDS capability to
withstand high bandwidth, or slow attack rates. You can also use
tcpreplay to replay attacks on a simulated lab network, to test how
production systems respond.

27

* Tcpreplay example

$ tcpreplay -r 1 hping2.dmp -i ethO

sending on eth0

10 packets (420 bytes) sent in 0.12 seconds

34243.8 bytes/sec 0.26 megabits/sec 815
packets/sec

= This is tcpreplay sending hping2.dmp
over ethO at a rate of 1Mbps

$ tcpreplay -r 1 hping2.dmp -i ethO

sending on eth0

10 packets (420 bytes) sent in 0.12 seconds

34243.8 bytes/sec 0.26 megabits/sec 815 packets/sec

28

File Edit Capture Display Tools Help

U|T|me SOurce . Destination Protocol |Info
1 0000000 192,162.1.10 192.162.10,10 TCP ias-admind > netbios-dam [SYM] Seq=17756319%
2 0,000043 152,168,1,10 1582,168,10,10 TCP netbios-dgm > ias—admind [5YMN, ACK] Seq=178E
TCP iss—admind > netbios—dam [ACK]
TCP jas—adnind > netbios-dan [PS

TCP nethios—dgm >

CK] Se:
eq=170

ios—dgn [PSH.fl =17 7L
—adnind [ACK] S £1328E

] —

=
Frame 4 (396 on wire. 96 captured) =
Ethernet 11
Internet Protocol. Sre Addr: 192.168.1.10 (192.168.1.10), Dst Addr: 192.168.10.10 (192.168.10.10)
Transmizsion Control Protocol, Src Port: iss—admind (2141}, D=t Port: netbios—dgm (138), Seq: 1775631997,

Data (30 butes)

~I T —
I =
Q000 00 de ad 00 be ef 00 be af 00 de ad 02 00 45 00 LPoLhiLh TLUPoLLE, &
0010 00 52 b2 Zb 40 00 FF 0B 32d 05 o0 a2 0L Oa cO a8 WRERLG.
0020 0a 0a 08 Gd 00 8a 63 dS fe 7d Ba 76 39 Fe 80 18 vselaaif
OO30 FF OFF FE Bb 00 00 01 01 08 0s 00 2b 38 47 00 2b Bukeses vos

Lk
0040 38 d7 695 B2 32 66 20 35 6B BY B2 20 34 Bl 3% 65 Bxeb2f 5 feb 4abe
0050 20 22 33 BE B2 20 39 33 6L 20 38 29 de ad be ef 829fb 93 e 89P-4i

Fiter | | /| Reset| Apply|[File: testdatat dmp

Ethereal, grandfather of all commercial sniffers! Ethereal actually takes
its good layout and ideas from the old Network General Sniffer.
Ethereal is available for free, for a variety of platforms from
http://www.ethereal.com

The top pane shows basic packet header and protocol information.
The middle pane is almost identical to tcpshow output, where you see
packet information printed out verbosely by layer. The final pane is a
packet dump in hexadecimal.

Ethereal has a phenomenal filter language. There are currently 381
supported protocols and media in ethereal. If you run it, chances are,
ethereal can decode it.

* Tethereal

= Command line version of ethereal
= Comes coupled with ethereal

= Ethereal (text or gui) pros:
= Advanced protocol decoders
= 3 views: header, verbose, hex

= Reads/writes a great variety of capture
formats

Ethereal and Tethereal are effectively the same tool. One is the GUI
version of the other. The advantage of using Tethereal over Ethereal is
that you can run it as root without running X windows as root, as well
being able to use the unix text processing tools to parse the data.

Ethereal and Tethereal should be used, in my opinion, as packet replay
and analysis tools, not as a packet capture tool. In my experience,
Ethereal is far slower then tcpdump or snort for packet capture.

30

i Mergecap

“Merges two capture files into one”
= Mergecap comes with Ethereal

= Mergecap uses:

= Mergecap can combine pcap lodfiles,
useful when doing analysis on events that
span log rotation times.

= Concatenate disparate pcap files together
for use in IDS / Firewall testing

Mergecap comes with Ethereal and Tethereal. Mergecap is a very
handy tool. It has come most in handy when combining pcap files
together in order to conduct analysis on an event that spans log rotation
times.

For example: You rotate your IDS logs every hour. Suppose an
incident began at 14:59 and ended at 15:01. Your logs would be in two
separate pcap files. The easy way to merge them: $ mergecap —w
combined.pcap 1400.pcap 1500.pcap

31

* Final foo

= Packet craft can be used for good and
evil

= Combining many of these tools will give
you a powerful test suite

= Use packet craft to further your
knowledge of network protocols

= Share your knowledge with others
= May the foo be with you...

32

* References and links

netdude.sourceforge.net

= http://www.atstake.com/research/tools/network_utilities/
= http://www.ethereal.com/

= http://sourceforge.net/projects/sing

= http://www.packetfactory.net/

= http://www.hping.org/

= http://www.networksorcery.com/enp/default0502.htm

= http://www.digitalguardian.net/refs.html

Thanks and good night!

33

